
	MES 2012 プログラム		9月12日(水)
	A会場	B会場	C会場
00:00	【1A1】パワエレ-1 耐高温実装	【IBI】ものづくりセッション-1	【1C1】半導体実装
11:40	1. SiCパワーデバイス実装の諸問題と世界の開発動向 ○宮代文夫(よこはま高度実装技術コンソーシアム) (依頼講演40分)	 生産性向上を達成する次世代型硫酸銅めっき添加剤 ○広岡和洋(奥野製薬工業) 	 ファインピッチフリップチップ実装に用いるバンプ様の検討 ○鳥山和重、岡本圭司、乃万裕一、武岡 康、折井鉾(日本アイ・ビー・エム)
	 ナノコンボジットによるエポキシ樹脂の高耐熱化 ○竹松裕司¹, 岡本健次¹, 広瀬隆之¹, 池田良成¹, 高橋 良和¹, 田中祀捷² (¹富士電機,²早稲田大学大学院) 	2. 金属ナノ粒子を用いた低環境負荷ナノめっき技術 ○山本陽二郎(グリーンケム)	 フリップチップ実装に向けた Hot-Wre法による水素 ジカル洗浄~再酸化抑制効果の検討~ 鎌谷良介¹, 野北寛太¹², 太夫本 悟¹, 和泉 (¹九州工業大学大学院² ²福岡県産業・科学技術振興財
	3. パワーデバイス用窒化アルミニウム基板の開発 ○金近幸博, 菅原 研, 藤井彩子, 青木洋人, 佐藤秀樹 (トクヤマ)	3. 水溶性高分子のピアフィリングめっきへの応用 ○文屋 勝, 志村文繁 (ニットーボーメディカル)	3. 表面張力を利用した Si薄ダイのセルフアライメント おけるロバスト性評価 ○廣島 満¹、有田 潔¹、土師 宏¹、Bernhard Ol hofer²、Christhf Landesberger³、Sabine Scherbaum³、Jo Weber³、Karlheinz Bock³ (¹パナソニック ファクトリ ソリューションズ、²Panasonic Factory Solutions Eur GmbH、³Fraunhofer EMFT)
	4. 高温実装に向けた SiC パワーデバイスの金-金接合の検討 ○加藤史樹, 仲川 博, 郎 豊群, 佐藤 弘, 山口 浩 (産業技術総合研究所)	4. LED 照明用積層構造〜トップMRSプロセス〜 ○青木智美(奥野製薬工業)	4. ─括積層工法におけるLSI接合技術 ○藤原康平,稲葉重信,近藤宏司(デンソー)
		5. 実装接合部のFIB/TEM分析 ○瀬山喜彦,高橋伸雄,栗原 丈 (富士通クオリティ・ラボ)	5. 微細Auバンプを用いたCPW接続構造体における信 損失最小化に関する検討 ○安 陽太郎¹, 菊地克弥², 加藤史樹², 根本俊介², 川 博², 越地耕二¹, 青柳昌宏¹.² (¹東京理科大学カ院, ²産業技術総合研究所)
12:40 14:00	【1A2】パワエレ-2 耐熱接合材	【1B2】ものづくりセッション-2	【1C2】先端材料
	1. パワーデバイス用高耐熱ワイヤボンディング ○余 宙¹, 巽 宏平¹, 濱田賢祐², 武内 彰² (¹早稲田大学大学院, ²超音波工業) 1. アリー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1. 電子機器実装用低温・短時間硬化接着剤 ○徳平英士,北村和大,八木友久,伊達仁昭(富士通クオリティ・ラボ)	1. ジルコニウムアルコキシドのIn-situ重合により合成
	 Agワイヤの接合信頼性 ○安徳優希, 手島 聡, 千葉 淳, 安原和彦(田中電子工業) 	2. 独立回路基板に適した無電解銅めっき処理プロセス ○本間秀和(奥野製薬工業)	2. 低膨張基板対応低温ガラス ○戸田 勲, 高野浩次, 加東 隆, 村橋浩一郎(奥里 薬工業)
	3. 発表中止	3. インクジェットプロセス開発用単ノズルセット ○矢部雄一(クラスターテクノロジー)	3. 印刷性向上のための自己復元性生体インタフェース の階層的表面改質 () 安田清和 (大阪大学大学院)
	4. クラッド材を用いた高温Pbフリー接合材 ○山口拓人¹,池田 靖¹,秦 昌平¹,小田祐一²,黒木 一真²(¹日立製作所,²日立電線)	4. 高耐食性無電解 Ni めっき液の開発 ○小野由加利, 齋藤博之, 小野寺恒太(クオルテック)	

